Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1alpha,25-dihydroxyvitamin D3.
نویسندگان
چکیده
HL60 promyeloid cells express both classes of oestrogen receptor (ERalpha and ERbeta). We show that hydrolysis of oestrone sulphate by steroid sulphatase is a major source of oestrone in HL60 cells, and that most of the released oestrone is not metabolized further to 17beta-oestradiol. Treatment of HL60 cells with retinoids or 1alpha,25-dihydroxyvitamin D3 increased steroid sulphatase mRNA and activity in parallel with the induction of CD11b, an early marker of myeloid differentiation that is expressed before the differentiating cells stop proliferating. Use of agonists and antagonists against retinoid receptor-alpha and retinoid receptor-X revealed that both classes of retinoid receptor can drive steroid sulphatase up-regulation. Steroid sulphatase activity fluctuates during the cell cycle, being highest around the transition from G1 to S phase. During the differentiation of HL60 cells induced by all-trans-retinoic acid or 1alpha,25-dihydroxyvitamin D3, there is increased conversion of 17beta-oestradiol into oestrone by an oxidative 17beta-hydroxysteroid dehydrogenase. Treatment of Caco-2 colon adenocarcinoma cells with all-trans-retinoic acid or 1alpha,25-dihydroxyvitamin D3 also increases 17beta-oestradiol oxidation to oestrone. An increase in local oestrone production therefore occurs in multiple cell types following treatment with retinoids and 1alpha,25-dihydroxyvitamin D3. The possible involvement of locally produced oestrogenic steroids in regulating the proliferation and differentiation of myeloid cells is discussed.
منابع مشابه
Synergistic enhancement by 12-O-tetradecanoylphorbol-13-acetate and dibutyryl cAMP of 1alpha,25-dihydroxyvitamin D3 action in human promyelocytic leukemic HL-60 cells.
We have reported that dibutyryl cAMP (dbcAMP), an activator of cAMP-dependent protein kinase (PKA), potentiated the effects of 1alpha,25-dihydroxyvitamin D3(1,25-(OH)2D3)-induced 24-hydroxylation activity in HL-60 cells by increasing 1,25-(OH)2D3 receptor (VDR). The present study demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent phorbol ester, also potentiated the effect of...
متن کاملKaposi sarcoma is a therapeutic target for vitamin D(3) receptor agonist.
Kaposi sarcoma (KS) is responsive to a number of different steroid hormones, such as glucocorticoids and retinoids. An active metabolite of vitamin D, 1alpha,25 dihydroxyvitamin D(3), was used to study the effect of this steroid hormone in KS. Steroid hormones exert their effect through their cognate nuclear receptors, which for vitamin D metabolites is the vitamin D receptor (VDR). It was firs...
متن کاملSelective use of multiple vitamin D response elements underlies the 1 α,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene
The human 25-hydroxyvitamin D3 (25(OH)D3) 1alpha-hydroxylase, which is encoded by the CYP27B1 gene, catalyzes the metabolic activation of the 25(OH)D3 into 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), the most biologically potent vitamin D3 metabolite. The most important regulator of CYP27B1 gene activity is 1alpha,25(OH)2D3 itself, which down-regulates the gene. The down-regulation of the...
متن کاملProducts of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity
BACKGROUND Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)(2)D3, as well as 1-hydroxyvitamin D3 to 1alpha,20-dihydroxyvitamin D3 (1,20(OH)(2)D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalcifero...
متن کاملاثر هم افزایی کاربرد توأم زهر زنبور عسل و25،1- دی هیدروکسی ویتامینD3 برالقای تمایز رده ی سلولی سرطانی پرومیلوسیتی HL-60
Introduction & Objective: Acute promyelocytic leukemia (APL) is a kind of acute leukemia characterized by a balanced t (15, 17) translocation which fails to develop into mature cells and proliferate in an unregulated fashion. In the recent years, in addition to combinatoral chemotherapy to treat unmature cancerous cells, differentiation therapy by differentiating agents as a novel procedure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 355 Pt 2 شماره
صفحات -
تاریخ انتشار 2001